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ABSTRACT

A first-phase, perturbation analysis is presented for the tracking requirements

necessary for the measurement of the second-order redshift in a heliocentric probe

experiment. The clock performance required for such an experiment is also investi-

gated.
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THE SECOND-ORDER GRAVITATION REDSHIFT

- TRACKING ANALYSIS STUDY -

Jack Jaffe and Robert F. C. Vessot

Center for Astrophysics

Harvard College Observatory and Smithsonian Astrophysical Observatory

Cambridge, Massachusetts 02138

1. INTRODUCTION

The second-order redshift experiment is one of two tests that is currently feasible

of the second-order term in the theories of gravitation. To date, the only second-

order test is the measurement of the perihelion advance of a planet or space probe;

all the other current experimental tests of relativity measure first-order effects

only.

A second-order redshift experiment basically consists of sending a space probe

containing a very stable atomic clock as close to the sun as possible and comparing its

frequency with an identical clock on earth by use of light or microwave signals. If the

gravitational potential difference is sufficiently great, compared to the relative stability

of the two clocks, the second-order term should be measurable. An analysis of the

basic theory and equations of this experiment, as well as model orbit calculations,

have been completed in an earlier phase of this study (Jaffe and Vessot, 1973).

It is worth noting that one advantage of an experiment of this kind is that "idealized"

orbits, which would necessitate "drag-free" probe tolerances, are not required.

This paper is basically concerned with a first-phase analysis of the actual tracking

requirements necessary for measuring the second-order redshift. This analysis has

then been applied to various model orbits of heliocentric probes, such as the proposed

NASA-ESRO heliocentric satellite mission.

This work was supported in part by grant NGR 09-015-205 from the National
Aeronautics and Space Administration.
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2. SECOND-ORDER GRAVITATIONAL REDSHIFT

We can establish the maximum requirements for the necessary accuracy of the

tracking parameters by application of the perturbation technique. The determination

of the minimum allowable requirements would necessitate a more extensive analysis,

by using the correlation and covariance matrix approach. This is beyond the present

scope of this phase of the study and would be the next logical step in a more detailed

study of the redshift experiment.

We will first establish the tracking-accuracy requirements for the parameters as

they are originally written in the heliocentric coordinate system. These accuracy

requirements will then be converted into the earth-based coordinate system.

For an earth-based observer, the "doppler-canceled' redshifted signal z

received at the earth station from the probe is, in heliocentric coordinates (Jaffe and

Vessot, 1973),

Av rm m +1 ,( 2 +A (A2z + - ( - ).p +A -(A'-A)
v LI r2 2 1 2 ep e

(A A ) 1 2 2) + A (A' - Ae)

A r \ 2 2(A '1)

(Ap e A )r 2 +A ('p

rl r2 3 " 1 2
r 2r 24 2 1 2 1 2

+ P P 2P P + m 2 +r 2
8 1 2 1 2 2 r

r2 r r I r2 2 2

+ (A' - A A, m _ m) + 1 2 p2) + A (A' -A ) + A 3

p e p KrI r2 2 1 ep e e

(1)
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where m E GM/c 2 ,  i vi/c (G and c are set = 1 throughout), 2 = p. + rp .'
1 1

Ae l d E p 2 12 in which = [VA7 f - (B12/r 2 ), I/r, 01 is the

generalized "direction vector" of the light signal from position i to position j; I is a

constant of the motion for the light signal, B 1 - (2m/r) + (P - y) (2m2/r2), and

A - 1 + y (2m/r). The unsubscripted parameters, p and y-, are the so-called

Eddington-Robertson coefficients (Jaffe and Vessot, 1973).

3



3. DETERMINATION OF I IN TERMS OF THE BOUNDARY CONDITIONS

Before proceeding with the specific perturbation analysis, we must first determine

I in terms of rl, 01, r 2, and 62. This can be done by using the geodesic equations of

motion for light. We first carry out the calculation in the absence of gravity, and then

we repeat this analysis for the spherically symmetric gravitational field.

In the absence of gravity, all the gij = 1, and the relevant geodesic equations for

light in the (r, 9, 4, t) coordinate system are as follows (Jaffe, 1969):

2 dO
r - = constant -p ,ds

dt =constant -q ,

-= constant = ;
q

I can be interpreted as the impact parameter as measured at infinity.* The 4 equation

is not necessary here, for light can be confined to motion on a plane; this is true both

in the classical and in the general relativistic cases.

For gij = 1, the metric is simply

2 2 2 2 2ds =dt - dr - r dO .

For the case of light, ds 2 = 0.

Combining these equations, we have

dr 2 r 4  2= -- r
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2 dr
fdO f = J dr

2 2

The ± sign depends on the direction of the light signal. This equation can be integrated

to yield

0 = cos- +

dr
where 0 is the point at which = 0. The corresponding value of r, the so-

dr

called turning point, is defined as do, i. e., T= 0 .

We have

2 = -cos- +00

0 = cos + 00

Subtracting the second equation from the first and taking the cosine of both sides yield

1 2 2 _ 2 1/2 2 _ 2) 1/2
cos (92 -061 rlr2 [ - (r1  (r2  ]

By solving for 1, we finally have

r 1 r 2 sin (02 - 01)

1~ + r2- 2r 2 cos (02 - 1)

Since, classically, light moves in a straight line, the "impact parameter at

infinity," 1, is indeed the value of the distance of closest approach at the point of

closest approach. Thus,
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I = dg 0

This is not the case in general relativity, as will be seen below.

We now repeat the calculations in the general relativistic framework. We will

use the exact Schwarzschild field here, instead of the Eddington-Robertson expansion,

for the spherically symmetric gravitational field, because it is somewhat simpler to

manipulate and is quite sufficient for our present purposes. The Schwarzschild field

is given as

2
ds 2 =Adt 2  dr r 2 d 2

A

where A 1 - 2m/r. For light, ds 2 = 0.

The relevant geodesic equations are

2 dO
r = constant - pds

dt
A = constant Eq ,

P=I
q

where I can again be interpreted as the impact parameter as measured at infinity.

Combining these equations gives

(dr 2  r 4  2S = - - Ar ; (3)

drd= 0 at r= d. This yields

2 d2  d2

A 1- (2m/d)
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or

I d (4)
1 -(2m/d)

Thus, I does not have the same value as the turning point, d. By integrating

equation (3), we have

fd =±f dr

r r A

d3/2 dr

d>>m r / 2  r 3 d - d 3 r - 2m(r 3 - d3 )

d dr 1 + m md= d r 1+ r(r+d)

-1 d m r2-d2 2rdl +d (5)
= co d + d 2  2r +00 (5)

r d r(r + d)

dr
where 0 is the value of 0 where de = 0.

Accordingly,

0 - = cos-1 d + M 2 -d 2  1
0 1 r d r 1  r (r + d)'

-1 d m 2 2  2
8r-r cos - r d2 0 r2 d 2 2(r2 + d)
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Adding these two equations and taking the cosine of both sides yield

os cos-1 d+ cos-1 d )  1 (d r2 d2 2 d2)
Scos 2  r d 2 0

2r + d
m 22 2 0

os ( 1
) + r- d  r2(r2 + d0)

S 2rl + d1  ) sin ( 2 -81)

Solving for d, we obtain

d= -1/2
r 2 rijl - [cos (02 - 1) + (m/d 0 ) E sin (02 0 1 )12

r+r2 - 2rlr 2 cos (02 -01) + (m/d 0) E sin (02 - 1) 1

r . r sin( 0_____21) 1 -. m E [ctn (0 2 -01)

r l +r 2 - 2rr 2 Cos (02 01

r 1 r 2 sin (02 - 1)

22 (
r1 + r 2 - 2r 1 r 2 cos (02 -1)

where

2r +d 2 2r +d0
2 2 2 +0 2 2 1 0

E= rr 1 d + dr d
2  r 2 (r 2 + d) r (r1  d0 )
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Comparing equation (6) with equation (2), we see that

m do
d=d 1+0 E - ctn (02 -0

0 r + r2 - 2r r2 cos (02 - 1)

(7)

By use of equation (4), 1 can finally be written as

S d o do do

0- tn (0 - 1) . (8)
r1 + 2 - 2r r cos (02  1
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4. PERTURBATION ANALYSIS IN THE HELIOCENTRIC SYSTEM

We will first carry out a perturbation analysis with respect to the heliocentric

space-probe parameters r 2, 2, Vr2 v 0 2. Errors due to uncertainties in the earth-

based observer's parameters (rl, 0 1, ... ) will be significantly smaller, and need not

be considered here in an analysis of the most stringent tracking accuracies required.

4. 1 Radial Velocity

Differentiating equation (1) with respect to Pr2, we have

2
z= +Ae 1 - 2 r 2  (9)

22 r2

Lower order terms in v/c need not be retained here, since we are solving for the

maximum uncertainty in the parameter that will still allow detection of the second-

order (in m/r = fourth order in v/c) redshift effect.

4.2 Angular Velocity

Differentiating equation (1) with respect to P2, we have

Az = (- r2 P2 + Ae )P (10)
) 22 

( 0

4.3 Radial Distance

We differentiate equation (1) with respect to r 2 . This result is more involved than

the preceding equations, since I is also a function of r 2 and 02 . We find
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Ar 2  Pr 2  2 1
m 2  2  e 2  21
r r 2 2 2 e 2 r(2 r 22 2 2 r 2

2 1 2

+ A A r 2 r , (II)

p e -2 /) r l r l  01 2 8r 2

where

r 1 r 2 sin (02 - 01)

r + r2 - 2rr 2 cos (2 - 1)

(The corrections in m/d to I need not be retained here, for the same reasons as given

above.) And,

r 1 sin (2 - 1)[r 1 -r 2 cos (02 - 1)
r2  2 . 1 (133/2

[rl + r2 - 2rr 2 cos (02 -6)]

4.4 Angle

Differentiating equation (1) with respect to 02 yields

Az=A + P AO2

21 /r 2 2

+ (A' 2A ) F1 2 A2 (14)
p e 2 1 2

1 r 1
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where

22 22
_ r 1 r 2 cos ( 2 - 1)[rl + r2 - r1 r 2 cos ( 2 - 01)] - 1 r2 (15)

Be2 2 2 3/2 (15}
02 [rl + r 2 - 2r 1 r 2 cos ( 2  1
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5. CONVERSION FROM HELIOCENTRIC SYSTEM TO

GEOCENTRIC SYSTEM

It is sufficient at this stage of the analysis to make a plane-geometry conversion

from the sun-centered coordinate system to the earth-centered system. From

Figure 1, we have

r=R+p

2  R 2  p 2 +2- *

and

f=R+p ,

2 .2 =2 +2 .3 Er=R+p +2A
c=1

The unit vectors in the r and 0 directions can be written as

A A
e cos 0 1 + sin e j

= 1-sin2  + sin j ,

6 = - sino i + cos 6 j

=- sin i + 1- sin 2

where 1 and j are the unit vectors in the x and y directions (in the heliocentric system).

By the law of sines,

sin = sin (16)
p r
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or

sin = 2 sin .r

We finally have

e 1 sin2 + sinr 2 ~r

with

r 2 = R2 + 2 -_ 2Rp cos ,

A
an expression for e r written solely in terms of the earth-based coordinates p, 4, and
R. Similarly,

e = - sin + l+ - sin2
r2

We can now write pr and (3 completely in terms of the earth-based coordinates:

A A
r =" e = (R +) . e

where has the components

- (p sin 4+ 5 cos 4) + (p cos 4 - sin 4)

The earth's motion, R, is assumed here to be uniform and circular; i. e.,

S= -R sin t i + R w cos ot .

Corrections to this assumption will be discussed in a later section.
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We finally obtain

Pr = (+ ) er r

= - (R sin wt + p sin + cos ) 1 - sin2

r

+ (R wcos ct + p cos - sin ) sin , (17)

with

r2 = R2 + - 2Rp cos . (18)

Similarly,

rpe = (R + ) - 0

= (R w sin ct + p sin 4 + p cos 4)~ sin
r

+ (R w cos. t + p cos - sin) 1- sin2  (19)
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6. PERTURBATION ANALYSIS IN THE GEOCENTRIC SYSTEM

The preceding section has established the functional relationships of the param-

eters in the heliocentric system with respect to those in the geocentric system. We

must now consider the resultant uncertainty in these geocentric parameters that is

associated with the allowable uncertainty in the heliocentric parameters.

r
2 :

From equation (18),

2 2 1 1/2
r 2 = (R2 + p 2 -2Rp cos) / 2

Therefore,

r ar Or
2 2 2

r 2 AR + - Ap + A-2 R p 84

R - p cos AR (20a)

(R2 + p2 -_ 2Rp cos ) 1/2

+ p - R cos p (20b)
(R2 + 2 _ 2Rp cos 4)1/2

+ Rp sin . (20c)
(R2 + p2 - 2Rp cos )12

82

From equation (16),

2 = sin-1 ( sin )
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Therefore,

892 892 89
AO 2 AR + Ap +2 8R 8p 8

R - p cos p sin AR (21a)

[1-(p 2 /r2) sin2 ] 1/2 r 3

+ - 1 sn psin (p - R cos 4) Ap (21b)

* 1_ _ _o p sin (Rp sin (21c)
(P2/r2 sin 2 1/2 r 3[1 - (p 2/r2) sin2 ] [ r 2  r2

r2

From equation (17),

r r 2  a r 2 r apR 2
A2  p + 2~

4 2 ap + aA aw

- sin -2 sin - (R sin wt+ psin + cos )

X s in 2  p s n  + sin2  (p - R cos
2 2 4
2 2  2

+ cos c 2 - sin p + (R ocos wt + p cos ~- ~sin )
r2

X -in p sin (p - R cos-)1 A (22a)
r 3
r2
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V2 2
- ( 2 sin2  + sin2 R  (22b)

2

2 sin cos + 2 R - (p sin + 5 cos ) p sin

+ (R w cos wt + p cos - sin )

o p sin R p sin (22c)
r 3

2

-sin 1 sin - pcos (22d)

2 r2
sin wt -,sn 42

r2 2

x ' sin (R - p cos w) -Co cot -sin4,

2

+ (Rw ocos wt + p cos - p sin L) 2 (R - p cos )] AR (22e)
r2
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2 2
[R sin wt + w 2 R cos wt) 1 - r22 sin2

+ (R cos wt - w2 R sin wt) 2 sin A (22f)

PO2

From equation (19),

ap0 ap 2 ap2 ap2 ap2 a 2

B 2 p + AR + A

= sin sin - + (R wsin wt + p sin v + p cos )
r2  r2

2-2 2
(R w cos wt + p cos - 5 sin) P s 2  + (p - R os )

S (R w sin wt + p sin + cos) sin
r2  r 2

p - R cos Ap (23a)

(R2 + p2 _ 2Rp cos )/2
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+ 2 os 4 - sin 4 - sin 1 - sin2 l y (23b)

2C 2

+2 (p cos - 5 sin P) -  sin s

(Rw sin wt + p sin + cos p c p Rp sin

r2

X 2p 2 s in  cos  + 2p sin 3  Rp
2 4

2 2

2 (R w sin wt + p sin + 0 cos 4-) sin,

+ (R w cos wt + p cos - sin ) 1 - sin2

r2
2

S Rp sin (23c)

(R2 + p - 2R p cos /2

+ psin2 4 + p cos 1- sin2  (23d)
2 2 (23d)2

2
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+ o sin Ot sin 4 - (R osin t + pin + cos) psn (R - p cos )

2  2  r22

+ W cos wt 1- 2 sin 2 + (Rw cos Ct + pcos , - sin )

2 2 2
2 sin2 P sin (R - p cos )

2 r2

(R wsin ot + p sin + 5 cos ,) sin
r 2

+ (R w cos wt + p cos ~ - sin 1 -P sin2

r

R - p cos 1/2 AR (23e)

(R2 + p - 2R p cos

+ r- (R sin wt + w2 R cos wt) -  sin4

+ (R cos wt - c2 R sin wt) - sin A (23f)2
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7. CORRECTIONS TO IDEALIZED MODELS

The redshift equation, equation (1), and the various other forms derived in the

preceding study (Jaffe and Vessot, 1973) are completely general; they have been set

up without any restrictions on P,. Our idealized model here has assumed a "point"

earth moving in a perfect circle around the sun; the velocity of revolution is

-30 km/sec. Of course, the earth is not a point, and it is necessary to investigate

what corrections to our present analysis would be introduced by considering a more

realistic model of the earth.

The earth has a mean radius of ~6400 km and rotates on its axis with a velocity

of rotation of -0. 47 km/sec. Since this velocity of rotation is about two orders of

magnitude less than the velocity of revolution around the sun, it is not necessary to

include the secondary velocity effects in this present determination of the greatest

permissible uncertainty in the tracking parameters. Similarly, since the earth's

radius is approximately four orders of magnitude less than the earth-sun distance,

inclusion of a finite-radius earth in the transformation to a geodetic system would

negligibly change the resultant equations here.

All secondary effects, such as the earth's rotation, motion about the earth-moon

barycenter, and the earth and moon's actual gravitational potential, can be included

in the final working program, by use of the completely general formalism already

derived. As was emphasized in the preceding study (Jaffe and Vessot, 1973), all

coordinates, parameters, and constants must eventually be written in an operational

framework, completely in terms of observables (invariants), in order to eliminate

any ambiguity in the interpretation of a coordinate system.
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8. ANALYSIS OF TRACKING-ACCURACY REQUIREMENTS FOR

HE LIOCENTRIC PROBE MODEL ORBITS

The perturbation equations derived in the preceding sections were programed

and applied to various model orbits of a heliocentric probe, such as the proposed

NASA-ESRO heliocentric satellite mission.

The general analysis of the tracking-accuracy requirements is as follows: For a

given time in the orbit, all the various-order terms in the redshift were calculated.

The smallest term was then used to determine the maximum allowable uncertainties

in the heliocentric parameters, as given by the equations in Section 4. These uncer-

tainties in the heliocentric parameters were then converted to corresponding uncer-

tainties in the geodetic parameters, through the equations in Sections 5 and 6.

Obviously, an uncertainty in a geodetic parameter such as p could correspond to

uncertainties in more than one heliocentric parameter, in this case, r 2, 62, pr ') ;
all these possibilities were computed, commensurate with the actual allowable

uncertainties in the heliocentric parameters, and the program then chose the maximum

uncertainty in each case. The results are shown in Figures 2 to 4.
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9. STATE OF THE ART IN DEEP-SPACE-PROBE TRACKING

The present state of the art in deep-space-probe tracking is illustrated in Table 1,

which gives the 1-sigma accuracies achievable with observations carried out both with

present-day and with projected future capabilities'in instrumentation and data-process-

ing methods. The given values do not take into account the possible contributions to

the achievable maximum accuracy coming from a priori knowledge of the space

trajectory.

All figures apply to dual-frequency observations, which remove the effects of the

interplanetary plasma as well as those of the earth's ionosphere. The angular accuracy

values apply to earth-based very long-baseline interferometry (VLBI) systems, in

which tropospheric effects have been removed (down to 0. 1%) by columnar radiometric

observations (conducted at water vapor and oxygen absorption lines) of the tropospheric

path along the direction of, and simultaneously with, the VLBI beam. The angular

accuracy figures could be substantially lowered (to 10 - 9 or even 10 rad) by using a

100, 000-km VLBI baseline established between two satellites, thereby totally removing

the effect of the time-variable and space-variable earth's atmosphere. With this

spaceborne VLBI system, the angular rate accuracies could be improved to 10 - 1 3 or

10-14 rad/sec.

Table 1. Achievable Accuracies with State-of-the-Art Deep-Space-Probe
Tracking Techniques

Radial Radial Angular
range velocity Angle velocity

Capability (m) (mm/sec) (rad) (rad/sec)

Present 16 0.5 2 X 10 - 7  10-12

Future 1 0.05 2 X 10 1013
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10. COMPARISON OF REQUIRED AND CURRENTLY

ACHIEVABLE TRACKING ACCURACY

The analysis indicates that the current tracking capability is sufficient to determine

the range p and earth-sun distance R accurately enough for a second-order redshift

experiment. The JPL Deep Space Network (DSN) tracking program, for example, has

a present range tracking accuracy of approximately 16 m and a projected, future

accuracy of about 1 m.

With regard to range rate , for all model orbits considered, the present con-

ventional tracking schemes are about two orders of magnitude too crude for some parts

of the probe orbit, but nearly sufficient near perihelion (which corresponds to the

greatest possible redshift with respect to the earth). The projected, future accuracy

is still a bit less than is required over the entire orbit.

The angular tracking accuracy p is also too crude in the regions far from perihelion

by roughly three orders of magnitude. Proposed accuracy for earth-based terminals

is still roughly two orders of magnitude too crude in these regions, even with the

assumption of the best estimate for earth-based VLBI tracking in the near future. As

mentioned in Section 9, a VLBI tracking system using satellites in earth orbit, although

a somewhat distant possibility, would be one way, for example, to achieve the required

tracking accuracy.

The angular velocity and w requirements are quite stringent for all model orbits.

This question requires more detailed study and depends on the specific tracking

scheme to be used.

25



11. CLOCK ACCURACY REQUIREMENTS

We can determine the necessary performance required of the clocks for a test of

the second-order redshift term by plotting the minimum p4 term in the redshift as a

function of the orbital time. Figures 5 to 7 indicate that the requirements are least

stringent near perihelion, where the redshift is maximal. (The curves are, of course,
not necessarily symmetric around perihelion, since the relative juxtaposition of the

probe and earth at different times will cause the P4 or mp2 terms to become as

significant as the pure m2 term.)

The present state of the art in atomic clocks is advancing toward stability in the

10- 16 region, for averaging intervals of the order of 105 to 106 sec. Ground-based

maser devices have already shown stability of 2 parts in 1015for time intervals of 10 to

104 sec. Development is in progress of a space-qualified hydrogen-maser clock for

a terrestrial probe experiment; development of space-qualified cesium and rubidium

devices is also expected in the next few years.
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12. RECOMMENDATIONS

This perturbation analysis is intended to present the "worst case" situation. It

has maximized the tracking requirements for the second-order redshift experiment.

Correlations of the parameters with respect to the earth and probe orbits, which

would probably tend to make the actual requirements somewhat less stringent, have

still to be considered. This further study requires more extensive effort and is

recommended as the next step in the analysis of a second-order redshift experiment.
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Figures 2, 3, and 4. Allowable uncertainties in the geodetic parameters, as a function

of the probe period. A plot of the earth-sun distance uncertainty AR, and the earth's

angular velocity of revolution Aw, have been omitted for simplicity; they are either of

the same order, or approximately 50% more stringent, than Ap and 4, respectively.
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Figures 5, 6, and 7. Minimum term of order c - 4 as given by equation (1), as a

function of probe period.
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